๐๐ฎ๐š๐ง๐ญ๐ฎ๐ฆ ๐ง๐ž๐ญ๐ฐ๐จ๐ซ๐ค ๐ฆ๐ž๐๐ข๐œ๐ข๐ง๐ž

Network Topology of the interactome

Based on network topology it has become clear that affecting a single protein (or in general node in the network) will not have the desired effect on the entire functionality of interactome, as has been shown in many experimental studies where a knock out of a single gene often doesnโ€™t have any phenotype. Similarly, the disease networks, inferred from the interactome, suggest that diseases are not isolated and multiple conditions may have the same root. Despite some success in network medicine, the latter is still limited by computational power needed to investigate the complex topology of the interactome and the incompletenesses of data for many medical conditions. Quantum chemistry can have a big impact on both, identifying network pathways and developing new compounds which can affect them in order to be used as effective medications. Nowadays quantum computers suffer from two main problems: high noise and impossibility for precise read-out of the results from the computation.

The Quantum advantage

These challenges are far from being solved, therefore todayโ€™s quantum computers are useful only for academic purposes solving specific scientific problems. However, quantum inspired algorithms for classical computers have already been shown to improve computational efficiency in random walk network analysis, crucial for interactome studies. Further, due to the same physics principles used for the calculations carried out in quantum computer and those governing quantum systems, like molecules, quantum computers are extremely suitable for simulating compounds and their subatomic structure. The latter being essential for simulating a drug candidates and their binding to potential protein targets.

Quantum Network Medicine Manifesto

For such an approach, only certain parts of the calculations need to be carried out on a quantum computer while all the others can be carried out on a classical machines, which makes the usage of quantum computing foreseeable in a near future. Moreover, the fast calculation of compound quantum properties will allow search of the overwhelmingly big compound space in search of potential drug targets. As a conclusion, quantum computing applied for both, compound design and molecular docking as well as interactome network analysis is something which we can expect to see in the near future.

--

--

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
QT4HC | Quantum Tech for Healthcare

QT4HC | Quantum Tech for Healthcare

2 Followers

A global crowdsource community of medical researchers that focuses on revealing Quantum Tech & Quantum Biology usecases